CLASS - XI

Chapter – 9

SEQUENCES AND SERIES

MODULE – 1 of 3

Distance Learning Programme: An initiative by AEES, Mumbai

CONTENTS

- 1. Revised Curriculum
- 2. Sequence
- 3. **Progressions**
- 4. Series
- 5. Arithmetic Progression (A.P)
- 6. Arithmetic Mean (A.M)
- 7. Geometric Progression (G.P)
- 8. Geometric Mean (G.M)
- 9. Relation between A.M & G.M

1. Revised Curriculum

DELETED PORTION (FOR THE SESSION 2020-2021) Formulae for the following special sums $-\Sigma k$, Σk^2 , Σk^3 .

REVISED PORTION (FOR THE SESSION 2020-2021) COURSE STRUCTURE Total Periods–168 [35 Minutes Each]

No.	Units	No. of Periods	Marks
Ι	Sets and Functions	43	23
Π	Algebra	41	30
	(a) Complex Numbers and Quadratic Equations, (b) Linear Inequalities, (c) Permutations and Combinations		
	(d) Sequence and Series –		
	Sequence and Series, Arithmetic Progression (A. P.), Arithmetic Mean (A.M.), Geometric Progression (G.P.), General term of a G.P., Sum of n terms of a G.P., Infinite G.P. and its sum, Geometric mean (G.M.), Relation between A.M. and G.M.	(08 periods of 35 Minutes each)	
III	Coordinate Geometry	33	10
IV	Calculus	30	7
V	Statistics and Probability	21	10
Total		168	80
Internal Assessment			20

2. Sequence

A sequence is an enumerated collection of objects in which repetitions are allowed and order matters

> For example

(M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y).

Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence.

Rank (Index)

The position of an element in a sequence is its *rank* or *index*.

It is the natural number for which the element is the image.

Terms

The various numbers occurring in a sequence are called its terms. We denote the terms of a sequence by a_1 , a_2 , a_3 , ..., a_n , ..., etc., the subscripts (1, 2, 3, ..., n, ...) denote the position of the term.

The nth term is called the **general term** of the sequence.

Finite & Infinite Sequences

A sequence containing finite number of terms is called a **finite** sequence.

Some Examples ↓

Example-1

Sequence of natural numbers less than and equal to 100

i.e. 1, 2, 3, 4, 5, 6,, 98, 99, 100.

AECS, ANUPURAM

Example-2

Sequence of First ten odd numbers

i.e. 1, 3, 5, 7, 9.

A sequence is called **infinite**, if it is not a finite sequence.

Some Examples ↓

Example-1

The sequence of even numbers

i.e. 2, 4, 6, 8, 10, 12, ∞ terms

Example-2

The sequence of perfect square natural numbers

i.e. 1, 4, 9, 16, 25, 36,∞ terms

AECS, ANUPURAM

3. Progressions

The Sequences following specific patterns are called *progressions*.

Example of some progressions

1, 3, 5, 7, 9, 11.
1, 3, 9, 27, 81, 243,
25, 20, 15, 10, 5, 0, -5.
1, 4, 9, 16, 25, 36, 49.

In some cases, an arrangement of numbers has no visible pattern Such as 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, But this sequence is generated by the recurrence relation given by $a_1 = a_2 = 1$ $a_n = a_{n-2} + a_{n-1}, n > 2$ This sequence is called *Fibonacci sequence*.

Fibonacci sequence – 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

AECS, ANUPURAM

Mathematics Progressions

Arithmetic progression (A.P)

Sequence of numbers such that the difference of any two successive members of the sequence is a constant

Example – 1, 4, 7, 10, 13, (difference is 3)

Geometric progression (G.P)

Sequence of numbers such that the quotient of any two successive members of the sequence is a constant

Example – 1, 4, 16, 64, 256, (quotient is 4)

Harmonic progression (H.P)

Sequence of numbers such that their reciprocals form an arithmetic progression **Example** - 1/1, 1/4, 1/7, 1/10, 1/13, (reciprocals are in A.P.)

AECS, ANUPURAM

4. Series

Let $a_1, a_2, a_3, \dots, a_n$, be a given sequence, then,

The expression $a_1 + a_2 + a_3 + \dots + a_n + \dots$ is called the *series associated with the given sequence*.

In compact form \downarrow

Series is $\sum_{k=1}^{n} a_k$. (Here the notation Σ is a Greek letter called sigma)

Some Examples

Example 1

Write the first three terms in sequences defined by $a_n = 3n + 1$. Also write the series.

Solution

Here $a_n = 3n + 1$ Substituting n = 1, 2, 3, we get $a_1 = 3(1) + 1 = 4$, $a_2 = 3(2) + 1 = 7$, $a_3 = 3(3) + 1 = 10$

Sequence $\to 4, 7, 10$ Series $\to 4 + 7 + 10$ Or Series $\to \sum_{n=1}^{3} a_n = \sum_{n=1}^{3} (3n+1) = 4 + 7 + 10$

Example 2

What is the 15th term of the sequence defined by $a_n = (n + 1) (2 - n)$?

Solution

Here, $a_n = (n + 1) (2 - n)$ For 15th term, put n = 15 $a_{15} = (15 + 1) (2 - 15) = 16 \times -13 = -208$
